
Cloud-Native Networking,
Home Edition

Build and connect your VPCs with the Open Network Fabric

Quentin Monnet
<quentin@hedgehog.cloud>

FOSDEM – 2025-02-02

mailto:quentin@hedgehog.cloud

Open Network Fabric

Make on-premises cloud infrastructure easy
by abstracting the network away

Agenda

● Can I have a cloud at home, please?

● What’s Open Network Fabric?

● What does it look like?

Can I have a cloud at home, please?

The cloud: back to the origins*

In the beginning…

● There were binaries and libraries and messy dependencies

Let there be virtualization!

● … And there were virtual machines

● Too many resources, too slow

Let there be containers!

● … And there was Docker

● But how to orchestrate the containers?

* Warning: Oversimplification detected. This recollection of events may not be 100% accurate.

“We need a ship’s wheel with 7 handles”

… And all that comes with it.

“We need a ship’s wheel with 7 handles”

… And all that comes with it.

And all became immediately simpler.

Cloud providers to the rescue

easy

magic

Cloud Running applications is easy

Underlying infrastructure is
somebody else’s magic

��

Virtual Private Clouds

Virtual Private Cloud

Node

Containers

L3 isolation

Virtual Private Clouds

Virtual Private Cloud

Node

Containers

Building blocks for a cloud infrastructure
L3 isolation

What if I want a cloud on my own hardware?

Motivations

● Costs: buying GPUs can be more interesting than renting them

● Latency: Edge Computing to move compute closer to source of data

● Compliance: on-prems processing required

Use cases

● Cloud decentralisation (specialised, distributed clouds)

● Edge computing (smart city, industrial IoT, 5G edge)

● What else? 🤔

A I
What if I want a cloud on my own hardware?

Motivations

● Costs: buying GPUs can be more interesting than renting them

● Latency: Edge Computing to move compute closer to source of data

● Compliance: on-prems processing required

Use cases

● Cloud decentralisation (specialised, distributed clouds)

● Edge computing (smart city, industrial IoT, 5G edge)

● What else? 🤔

Building a cloud on-premises

hard

Cloud

Running applications becomes hard

Now, all the underlying infrastructure
is your magic

��

Open Network Fabric

Objective: deploy a cloud infra on commodity hardware

User’s hardware: branded
or white-box commodity
switches, servers

Objective: deploy a cloud infra on commodity hardware

Network: connectivity, observability, services

User’s hardware: branded
or white-box commodity
switches, servers

Objective: deploy a cloud infra on commodity hardware

Network: connectivity, observability, services

Virtual Private Clouds (just like with providers)

User’s hardware: branded
or white-box commodity
switches, servers

Celestica, Dell,
Edgecore, Supermicro

Merchant switching silicon

Commodity switching hardware

What components in Open Network Fabric?

Celestica, Dell,
Edgecore, Supermicro

Merchant switching silicon

Commodity switching hardware

SONiC operating system for switches

Open Networking Operating System

Open-source, multi-vendor (LF)
Minimalist, modular, hardened

Celestica, Dell,
Edgecore, Supermicro

Merchant switching silicon

Commodity switching hardware

Open Networking Operating System

Open-source, multi-vendor (LF)
Minimalist, modular, hardened

Kubernetes as Control Plane

Control Plane

Works and feels like a K8s cluster

Integrates into cloud-native
operational and observability stacks

GitOps, Infrastructure-as-Code

Result: VPC as a Service

Hardware

Fabric

VPC API

󰬃 󰳖 Open Network Fabric provides a VPC API

Same abstractions and tools as with cloud
providers

Under the hood: VXLAN-based BGP EVPN

Flexible policies and services
● VPC Policies
● Simple peering API

(local intra/inter-VPC, external)
● IPAM, DHCP, DHCP-relay

󰠩
VPC 1 VPC 2 VPC 3

Workflow
Example topology:

Clos network

MCLAG
unbundled bundled

Spine switches

Leaf switches

Servers

Workflow
Example topology:

Clos network

MCLAG
unbundled bundled

Spine switches

Leaf switches

Servers

Metadata
(Switch
profiles)

Wiring
diagram

✍

yaml

yaml

Workflow
Example topology:

Clos network

MCLAG
unbundled bundled

Spine switches

Leaf switches

Servers

Metadata
(Switch
profiles)

Wiring
diagram

✍
Switches automatically bootstrapped, imaged, configured

“Zero-touch” provisioning, updates, maintenance

Get VPCs; no network knowledge required 👌
magic!

yaml

yaml

The Gateway

x86/ARM, SmartNICs/DPUs

Immutable Linux

Commodity servers

DPDK

High performance software dataplane

User’s hardware: branded
or white-box commodity
servers and DPUs

Route traffic to VPCs located anywhere:
same fabric, public clouds, other fabrics or

private clouds

Work in progress

The Gateway

x86/ARM, SmartNICs/DPUs

Immutable Linux

Commodity servers

DPDK

High performance software dataplane

User’s hardware: branded
or white-box commodity
servers and DPUs

Route traffic to VPCs located anywhere:
same fabric, public clouds, other fabrics or

private clouds

Work in progress

Inter-VPC
routing NAT/PAT

L3/L4
SLB

VPC QoS

Inter*
gateway

Firewall

VXLAN

IPsec
WireGuard…

What does it look like?

The elephant in the room

https://en.wikipedia.org/wiki/Elephant_in_the_room#/media/File:Elephant's_tea_party,_Robur_Tea_Room,_Sydney,_24_March_1939_-_Sam_Hood_(3529604677).jpg

https://en.wikipedia.org/wiki/Elephant_in_the_room#/media/File:Elephant's_tea_party,_Robur_Tea_Room,_Sydney,_24_March_1939_-_Sam_Hood_(3529604677).jpg

Issues we need to fix:

● Registration required for testing

the project 😭
(Broadcom SONiC image needed,

upstream SONiC not yet supported)

● Confusion between project and product,

“Hedgehog Fabric” everywhere in docs.

Hedgehog Fabric == Open Network Fabric

But all code for Open Network Fabric itself is open-source

⚠ Open-source with caveats

Sample topology for the demo

MCLAG

unbundled

bundled

Leaf switches

Servers

leaf 01 leaf 02

server 01 server 02 server 03 server 04 control node

First step: install tools, then init, download, build, bootstrap the Fabric

Objective: deploy fabric, create two VPCs on servers 1-2, connect them

ubuntu@vlab-quentin:~$ docker login ghcr.io -u <username> -p <password>
ubuntu@vlab-quentin:~$ curl -fsSL https://i.hhdev.io/oras | bash
ubuntu@vlab-quentin:~$ curl -fsSL https://i.hhdev.io/hhfab | bash
ubuntu@vlab-quentin:~$ hhfab --version
hhfab version v0.32.1

ubuntu@vlab-quentin:~$ hhfab init --dev --fabric-mode collapsed-core
15:25:53 INF Hedgehog Fabricator version=v0.32.1
15:25:53 INF Generated initial config
15:25:53 INF Adjust configs (incl. credentials, modes, subnets, etc.)
file=fab.yaml
15:25:53 INF Include wiring files (.yaml) or adjust imported ones
dir=include
ubuntu@vlab-quentin:~$ ls fab.yaml
Fab.yaml

ubuntu@vlab-quentin:~$ hhfab vlab gen
15:26:27 INF Hedgehog Fabricator version=v0.32.1
15:26:27 INF Building VLAB wiring diagram fabricMode=collapsed-core
15:26:27 INF >>> mclagLeafsCount=2 mclagSessionLinks=2 mclagPeerLinks=2
15:26:27 INF >>> orphanLeafsCount=0 vpcLoopbacks=2
15:26:27 INF >>> mclagServers=2 eslagServers=2 unbundledServers=1
bundledServers=1
15:26:27 INF Generated wiring file name=vlab.generated.yaml

Register
for these

Initialisation;
creation of fab.yaml

Generate wiring diagram

ubuntu@vlab-quentin:~$ hhfab vlab up
15:27:13 INF Hedgehog Fabricator version=v0.32.1
[...]
15:27:23 INF Downloading name=fabricator/hhfabctl version=v0.32.1 type=oras
[...]
Downloading images 465.87 KiB / 465.87 KiB ⠙ done
Downloading boot 2.06 MiB / 2.06 MiB ⠙ done
Downloading EFI 2.02 MiB / 2.02 MiB ⠙ done
Downloading flatcar_production_image.bin.bz2 493.28 MiB / 493.28 MiB ⠋ done
[...]
15:30:13 INF Preparing new vm=control-1 type=control
15:30:28 INF Preparing new vm=server-01 type=server
15:30:29 INF Preparing new vm=server-02 type=server
15:30:31 INF Preparing new vm=server-03 type=server
15:30:33 INF Preparing new vm=server-04 type=server
15:30:34 INF Preparing new vm=leaf-01 type=switch
15:30:36 INF Preparing new vm=leaf-02 type=switch
15:30:36 INF Starting VMs count=7 cpu="22 vCPUs" ram="19456 MB" disk="240 GB"
[...]
15:42:04 INF Control node is ready vm=control-1 type=control
15:42:04 INF All VMs are ready
[keeps running in foreground]

Download components,
build, boot, run fabric

ubuntu@vlab-quentin:~$ hhfab vlab ssh
[...]
core@control-1 ~ $

core@control-1 ~ $ kubectl get switch
NAME PROFILE ROLE DESCR GROUPS LOCATIONUUID AGE
leaf-01 vs server-leaf VS-01 MCLAG 1 ["mclag-1"] 10m
leaf-02 vs server-leaf VS-02 MCLAG 1 ["mclag-1"] 10m

core@control-1 ~ $ kubectl fabric inspect switch -n leaf-01

NAME PROFILE ROLE GROUPS SERIAL STATE GEN APPLIED HEARTBEAT
leaf-01 Virtual Switch server-leaf mclag-1 Pending 0/1

Ports (in use):

NAME NOS TYPE CONNECTION ADM/OP (TRANSC) SPEED
TRANSCEIVER
E1/1 Ethernet0 mclag-domain leaf-01--mclag-domain--leaf-02
E1/2 Ethernet1 mclag-domain leaf-01--mclag-domain--leaf-02
E1/3 Ethernet2 mclag-domain leaf-01--mclag-domain--leaf-02
E1/4 Ethernet3 mclag-domain leaf-01--mclag-domain--leaf-02
E1/5 Ethernet4 mclag server-01--mclag--leaf-01--leaf-02
E1/6 Ethernet5 mclag server-02--mclag--leaf-01--leaf-02
E1/7 Ethernet6 unbundled server-03--unbundled--leaf-01
[...]

Port Counters (↓ In ↑ Out):

NAME SPEED UTIL % BITS/SEC IN BITS/SEC OUT PKTS/SEC IN PKTS/SEC OUT ERRORS DISCARDS
[...]

List info on a switch

Connect to control node

core@control-1 ~ $ kubectl fabric vpc create --name vpc-1 --subnet 10.0.1.0/24 \
 --vlan 1001 --dhcp --dhcp-start 10.0.1.10
16:52:10 INF VPC created name=vpc-1

core@control-1 ~ $ kubectl fabric vpc create --name vpc-2 --subnet 10.0.2.0/24 \
 --vlan 1002 --dhcp --dhcp-start 10.0.2.10
16:52:19 INF VPC created name=vpc-2

core@control-1 ~ $ kubectl fabric vpc attach --vpc-subnet vpc-1/default \
 --connection server-01--mclag--leaf-01--leaf-02
16:52:37 INF VPCAttachment created name=vpc-1--default--server-01--mclag--leaf-01--leaf-02

core@control-1 ~ $ kubectl fabric vpc attach --vpc-subnet vpc-2/default \
 --connection server-02--mclag--leaf-01--leaf-02
16:52:52 INF VPCAttachment created name=vpc-2--default--server-02--mclag--leaf-01--leaf-02

Create new VPCs

Attach new VPCs to
existing connections

core@server-01 ~ $ hhnet cleanup
core@server-01 ~ $ hhnet bond 1001 enp2s1 enp2s2
10.0.1.10/24

core@server-02 ~ $ hhnet cleanup
core@server-02 ~ $ hhnet bond 1002 enp2s1 enp2s2
10.0.2.10/24

core@server-01 ~ $ ping 10.0.2.10
PING 10.0.2.10 (10.0.2.10) 56(84) bytes of data.
From 10.0.1.1 icmp_seq=1 Destination Net Unreachable
From 10.0.1.1 icmp_seq=2 Destination Net Unreachable
From 10.0.1.1 icmp_seq=3 Destination Net Unreachable
^C
--- 10.0.2.10 ping statistics —
3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 2003ms

Setup bond interface on servers

No connectivity

core@control-1 ~ $ kubectl fabric vpc peer --vpc vpc-1 --vpc vpc-2
16:58:04 INF VPCPeering created name=vpc-1--vpc-2

core@server-01 ~ $ ping 10.0.2.10
PING 10.0.2.10 (10.0.2.10) 56(84) bytes of data.
64 bytes from 10.0.2.10: icmp_seq=1 ttl=62 time=6.25 ms
64 bytes from 10.0.2.10: icmp_seq=2 ttl=62 time=7.60 ms
64 bytes from 10.0.2.10: icmp_seq=3 ttl=62 time=8.60 ms
^C
--- 10.0.2.10 ping statistics —
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 6.245/7.481/8.601/0.965 ms

Setup peering between VPCs

VPCs connected!

Thank you!

Open Network Fabric
github.com/githedgehog

Contributions welcome!

https://hedgehog.cloud

https://github.com/githedgehog
https://hedgehog.cloud

