6 o

KubeCon CloudNativeCon

5"
Y | Forward legelher »

Vituat

r

KubeCon
Europe 2021

eBPF on the Rise Yirteal

Getting Started

N

CloudNativeCon

Quentin Monnet

Software Engineer at Isovalent
5th May 2021

CNCF & L 4
@CloudNativeFdn

#CNCF TOC chair @lizrice is sharing the 5 technologies to
watch in 2021 according to the TOC:

1. Chaos engineering

2. @kubernetesio for the edge

3. Service mesh

4. Web assembly and eBPF

5. Developer + operator experience

7:04 PM - Nov 20, 2020 (0]

O 212 © 89 M share this Tweet

CNCF: Cloud Native Computing Foundation | TOC: Technical Oversight Committee

Linux kernel / user space “paradox”
* Kernel: System awareness, but lacks flexibility
* User space: Programmable, but no direct access to
kernel structures, resources
* Kernel modules: Difficult, unsafe, not stable

Kernel components are well-bounded frameworks

Linux kernel / user space “paradox”
* Kernel: System awareness, but lacks flexibility
* User space: Programmable, but no direct access to
kernel structures, resources
* Kernel modules: Difficult, unsafe, not stable

Kernel components are well-bounded frameworks
Get out of the box:
e Can we have programmability in the kernel?
* How can this benefit to cloud-native environments?

Meet @'QBPF

eBPF is a general purpose execution engine

Kernel

eBPF is a general purpose execution engine

* Kernel space
® Rework from cBPF
(1990s: tcpdump, seccomp)
® Bytecode injected with bpf() syscall
® Program attached to kernel hook, runs on events

Kernel

eBPF is a general purpose execution engine

* Kernel space
® Rework from cBPF
(1990s: tcpdump, seccomp)
® Bytecode injected with bpf() syscall
® Program attached to kernel hook, runs on events

* Performance
® In-kernel JIT-compiler (Just In Time)
® Maps well to native code

Kernel

eBPF is a general purpose execution engine

* Kernel space
® Rework from cBPF
(1990s: tcpdump, seccomp)
® Bytecode injected with bpf() syscall
® Program attached to kernel hook, runs on events

* Performance
® In-kernel JIT-compiler (Just In Time)
® Maps well to native code

° Safety Kernel
® In-kernel verifier ensures termination and safety

eBPF is a general purpose execution engine

* Kernel space
® Rework from cBPF
(1990s: tcpdump, seccomp)
® Bytecode injected with bpf() syscall
® Program attached to kernel hook, runs on events

* Performance
® In-kernel JIT-compiler (Just In Time)
® Maps well to native code

° Safety Kernel
® In-kernel verifier ensures termination and safety

* Versatility
® Programs: 31types, some with multiple hooks
® Helper functions: 165
® Maps: 30 types

eBPF “Maps” are special kernel memory areas accessible
to a program

* Typically, “key/value” storage: hash map, array
* Shared between
® Several eBPF program runs
® Several eBPF programs Kernel
® eBPF and user space

eBPF programs support many features:
[]
[]
[]
[]
[]
[]
[]
[]
[]

Ever closer to “classic” code

Up to one million instructions
Tail calls

eBPF-to-eBPF function calls
Calls to specific kernel functions
Bounded loops

BTF (BPF Type Format)
Sleepable programs

Spinlocks

* Networking
® Hooks: TC (Traffic Control), XDP (eXpress Data Path), sockets
Anti-DDoS
Load-Balancing
Routing, overlay, NAT
TCP control

° Tracing & Monitoring
® Hooks: kprobes, uprobes, tracepoints, perf events
® Inspect, trace, profile kernel or user space functions
® Aggregate and correlate metrics in the kernel, return meaningful data

® Others
® Security (LSM)
® Infrared protocols
® File systems, storage, ...

K eBPF Tooling

The eBPF bytecode is usually generated with the clang/LLVM backend

Compile from C, store eBPF bytecode into an ELF object file:

$ clang -02 -g -emit-1lvm -c prog.c -o - | \

1lc -march=bpf -mcpu=v2 -filetype=obj -o prog.o

Example: Netw

block_non_ipv4(struct xdp_md *ctx)

*data_end = (*)()ctx->data_end;
xdata = (*)()ctx->data;
struct ethhdr xeth data;

if (data + sizeof(xeth) > data_end)
return XDP_DROP;

if (eth->h_proto == htons(ETH_P_IP))
return XDP_PASS;

return XDP_DROP;

Compile with clang
Load from the object file with ip link set

Example: Traci

bcc

b = BPF(text=

)

b.attach_kprobe(event= , fn_name=).trace_print()

BCC

Framework for eBPF tools
Handles compilation (libllvm), provides Python wrappers
Contains many examples

https://github.com/iovisor/bcc/

BCC Tools:

Trace usage of open() system call

Attach a kprobe and a kretprobe to sys_do_open()

Kprobe stores command name, filename, fd in a map
Kretprobe retrieves info from map and prints it, with return value
./opensnoop.py

PID COMM PATH

1576 snmpd /proc/sys/net/ipv6/neigh/lo/retrans_time_ms

1576 snmpd /proc/sys/net/ipv6/conf/lo/forwarding

1576 snmpd /proc/sys/net/ipv6/neigh/lo/base_reachable_time_ms
1576 snmpd /proc/diskstats

/proc/stat

/proc/vmstat

supervise/status.new

supervise/status.new

/etc/ld.so.cache

1576 snmpd
1576 snmpd
1956 supervise
1956 supervise
17358 run

Foool

© @0 0 0 0 0 0 6

Profile CPU usage: “flame graph” indicating how much time functions run

collect stack data

© Info and flamegraph.pl script at https://github.com/brendangregg/FlameGraph

CLOCK,

* Poll software perf event CPU

Flame Graph

- ===—m=es] T
—=—=a=zm

B P

Also usable for Python stack, Ruby, PHP, C* Java, Node.js, ...

https://github.com/brendangregg/FlameGraph

Linux bce/BPF Tracing Tools

ucalls uflow C* java* node* php*

mysqld_gslower

opensnoop statsnoop N hon* ruby* dbstat dbslower gethostlatency
syncsnoop uobjnew ustat PYE v bashreadline memleak
uthreads ugc | / sslsniff
filetop
filelife fileslower . R + K syscount
viscount vfsstat Applications killsnoop
cachestat cachetop Runtimes execsnoop
dcstat dcsnoop / e}_utsnoop
mountsnoop | System Libraries pidpersec
N / cpudist cpuwalk
race runglat runglen
argdist \ X System Call Interface g o unaslower
funccount ~— % / cpuunclaimed
g“ﬂcilm'er VFS * Sockets - deadlock
JZ;Z?:::Y Scheduler offcputime wakeuptime
profile I File Systems TCP/UDP A <4 offwaketime softirgs
N slabratetop
btrfsdist Volume Manager IP : | — oomkill memleak
btrfsslower -~ Virtual - < shmsnoop drsnoop
extd4dist extdslower ' . a Memory
nfsslower nfsdist 4 Block Device Net Device hardirgs
xfsslower xfsdist criticalstat
zfsslower / / Device Drivers ttysnoop
zfsdist
mdflush biotop biosnoop tceptop tcplife tcptracer
§ biolatency bitesize tcpconnect tcpaccept tcpconnlat llestat |CPUs
Other: tcpretrans tcpsubnet tcpdrop — L
capable sofdsnoop tcpstates

https://github.com/iovisor/bcc#tools 2019

Credits: Brendan Gregg

bpftrace, built on top of BCC

* Awk-inspired syntax, one-liners or short scripts
© “Linux equivalent to DTrace”

Usage

® probe_type:probe_target /filter/ { command block }
 Built-in variables and functions (handle maps, draw histograms, ...)

https://github.com/iovisor/bpftrace

Bpft

bpftrace, built on top of BCC

Awk-inspired syntax, one-liners or short scripts
“Linux equivalent to DTrace”

Usage

probe_type:probe_target /filter/ { command block }
Built-in variables and functions (handle maps, draw histograms, ...)

Tracing open()

bpftrace -e ' :do_sys_ : %s\n”, pid, comm, str(argi)) }

More examples

Read size distribution by process, present results as an histogram
bpftrace -e 'tracepoint:syscalls:sys_exit_read { @[comm] = hist(args->ret); }'

Count LLC cache misses by process name and PID (uses PMCs)
bpftrace -e 'hardware:cache-misses:1000000 { @[comm, pid] = count(); }'

https://github.com/iovisor/bpftrace

© C/C++: Libbpf, reference library

* Go: several libraries

® ebpf from Cloudflare and Cilium: Pure Go library
® libbpfgo: Wraps around libbpf
® gobpf: Wraps around bcc

¢ Rust:

® libbpf-rs: Wraps around libbpf
® RedBPF: Wraps around bcc

https://networkop.co.uk/post/2021-03-ebpf-intro/
https://github.com/cilium/ebpf
https://github.com/aquasecurity/tracee/tree/main/libbpfgo
https://github.com/iovisor/gobpf
https://github.com/libbpf/libbpf-rs
https://github.com/ingraind/redbpf

Bpftool: M

Bpftool to manage and inspect eBPF objects

Load a program
bpftool prog lo <program> <pinned_path>

List all BPF pro

rams loaded on the system

bpftool prog show
38: cgroup_skb tag 6deef7357e7bss530 gpl
loaded_at 2021-04-01T12:28:28+0100 uid 6
xlated 64B jited 61B memlock 4096B
: cgroup_skb tag 6deef7357e7bs530 gpl

loaded_at 2021-04-01T12:28:28+0100 uid o
xlated 64B jited 61B memlock 4096B
: xdp name process_packet tag 6deef7357e7bs530 offloaded_to nfp_p1
loaded_at 2021-04-01T21:37:12+0100 uid o
xlated 5848B jited 14072B memlock 8192B map_ids 29,30

Bpftool: Inspec

bpftool prog dump xlated id 4
o: (b7) ro = o
1: (95) exit

bpftool prog dump jited id 4
8 push %rbp
mov %rsp,%rbp
sub $0x28,%rsp
sub $ox28,%rbp
%rbx,oxe(%rbp)
%r13,0x8(%rbp)

ox18(%rbp),%ris
$ox28,%rbp

Bpftool: Manag

List all maps loaded on the system

bpftool map show

64: array name iterator.rodata flags oxs48e
key 4B value 98B max_entries 1 memlock 4096B
btf_id 235 frozen

2731: prog_array name test_map flags oxe
key 4B value 4B max_entries 4 memlock 4096B
owner_prog_type tracing owner jited

2768: array name rules flags oxe
key 4B value 32B max_entries 3 memlock 4096B

also available)
bpftool map lookup id 2768 key 0X01 OX00 OX00 OXOO
key:
01 00 00 00
value:
11 02 00 40 8c a4 6f aa 8c 10 00 00 00 54 b7 f9
cc 71 d4 ba 89 b1 a7 9c ©ee 2a 5f 3d d6 85 45 fo

Update a map entr
bpftool map update id 182 key 3 © @ © value 1 1 168 192

rams with user-defined input data and context

Test-run pro

bpftool prog run pinned /sys/fs/bpf/sample_rete data_in input data_out - repeat 10
0000000 0000 0O 0000 00O 0000 000 OO 0000 | 5

0000010 2e3e 2e48 656¢C 6¢6T 4b75 6265 436f 6e21 | .>.Hello KubeCon!
Return value: o, duration (average): 58ns

More features

Attach programs (not all types)

List programs per cgroup, per network interface, per tracing hook
Probe system support for eBPF features

Dump data from event maps

Packaged for several distributions, source code in kernel repository

Documentation: see man pages

KeBPF for

Cloud-Native Environments

Safety, performance, observability, versatility

In the kernel, but flexible
® Available by default, no add-on required
® Stable UAPI
® Updates: no wait for upstream, no reboot, no loss of packet

° Container-aware
® Multiple hooks
® Kernel is the ideal location for managing containers

¢ Create what you need...
® Don't just “program” a tool, “create”
® Solve real-world production challenges

® ... Just what you need
® Skip unnecessary features
® (Cleaner, faster, scalable

Linux kernel, base foundation for cloud-native environments: eBPF brings huge benefits!

Kubectl-trace to run bpftrace scripts on Pods

Create ConfigMap
Create Job
Get logs
Deploy
trace-runner
pod

exec client plugin

Install
BPF program

- B

: worker node
My laptop Kubernetes cluster

On the same model: Inspektor Gadget for BCC tools

Credits: Lorenzo Fontana

https://github.com/iovisor/kubectl-trace
https://github.com/kinvolk/inspektor-gadget

Cilium: eBPF-based Networking, Observability, and Security

Kube-proxy replacement

° Iptables: thousands of rules, linear search / eBPF: Hash map lookups

* Bypass Netfilter/conntrack entirely

pod

host

filter
FORWARD

mangle
POSTROUTING]

FIB
lookup

mangle
FORWARD

PREROUTING

PREROUTING

Cilium: eBPF-based Networking, Observability, and Security

Kube-proxy replacement

° Iptables: thousands of rules, linear search / eBPF: Hash map lookups
* Bypass Netfilter/conntrack entirely

pod

host

i1l

Example: Socket connection to Istio proxy for L7 policies

(Node

.

.

(§® Pod

envoy

Example: Socket connection to Istio proxy for L7 policies

(Node

.

HeBPF

.

(§® Pod

envoy

HeBPF

Networking
° Highly efficient and flexible
networking
° Routing, overlay,
cloud-provider native
© |Pvy, IPv6, NAT46
© Multi-cluster routing

Load balancing
* Highly scalable L3-Ls4 (XDP)
load-balancing
* Kubernetes services (replaces
kube-proxy)
© Multi-cluster
* Service affinity (prefer zones)

Network security
 ldentity-based network
security
* APl-aware security (HTTP,
gRPC, ...), DNS-aware
* Transparent encryption

Observability
* Metrics (network, DNS,
security, latencies, HTTP, ...)
° Flow logs (with datapath
aggregation)

Servicemesh
® Minimized overhead when
injecting servicemesh sidecar
proxies

° Istio integration Credits: Daniel Borkmann

Large scale production users

Facebook, Netflix, Google, Cloudflare, Cilium, ...

ONGa

Other projects rely on eBPF

Falco, Tracee, Hubble, Weave Scope, Suricata, ...
Falco probes were recently contributed to the CNCF

Vi (o 9% ¥ sdunn

Increasing number of projects

Start-ups

° New start-ups for continuous profiling, network analytics, security
° Acquisitions

® Pixie was acquired by New Relic

® Flowmill was acquired by Splunk

Kernel community

© One of the fastest growing subsystems in Linux
* Dedicated mailing list, 50 emails/day on average
* Three maintainers, five senior core reviewers (Facebook, Isovalent, Google)

First eBPF Summit (October 2020)

Mark Russinovich & L
B) @markrussinovich
We're working on eBPF-based Sysmon for Linux that has

same filtering and output schema (where applicable) as
Sysmon For Windows. Shooting for a preview in February.

ntinel | Logs #
-

.« [Je———

saonFortinax

s Chac |00 ol © oiey

et Showiog partialcasits ron the'

DMZDNDDIN bbiestider MO heshed
RMZRORRTINAN ubidrstion W0 behed
RMZORRTIOMN bicesiice WO hashed

7:16 PM - Dec 20, 2020 ®

QO 15k © 463 T, Share this Tweet

Steven Rostedt

'

BPF will replace Linux #kr2019

10:06 AM - Sep 26, 2019

O 87

© 2

Py

i

Share this Tweet

eBPF brings programmability to the kernel

* Safe, efficient, versatile, scalable
¢ Ideally located for gathering data or processing packets
in cloud-native environments

eBPF tooling

* Tracing/monitoring: BCC, bpftrace
© Development: libbpf, Go libraries
° Introspection, management: bpftool

eBPF on the rise

* Solves real-world problems
® See Cilium's datapath and network policies

© Big actors run eBPF in production at scale
© Buzzing community

Ride the eBPF wave!

eBPF cilium i1sovaLENT

https://ebpf.io
https://cilium.io
quentin@isovalent.com

For more eBPF use cases, watch our other presentations:

* Tomorrow, 13:30 CEST (Networking)

Uncovering a Sophisticated Kubernetes Attack in Real-Time - Jed Salazar & Natalia Réka Ivanko, Isovalent
© Tomorrow, 14:20 CEST (Security + Identity + Policy)

How to Break your Kubernetes Cluster with Networking - Thomas Graf, Isovalent

Questions on eBPF after the Q&A session? Community Slack: https://ebpf.io/slack

https://ebpf.io
https://cilium.io
mailto:quentin@isovalent.com
https://ebpf.io/slack

	Meet
	 Tooling
	 forCloud-Native Environments

