

eBPF on the Rise
Getting Started

Quentin Monnet
Software Engineer at Isovalent
5th May 2021

A Technology to Watch… but Why?

CNCF: Cloud Native Computing Foundation | TOC: Technical Oversight Committee

In-Kernel, Safe and Flexible Programs

Linux kernel / user space “paradox”
• Kernel: System awareness, but lacks flexibility
• User space: Programmable, but no direct access to
kernel structures, resources

• Kernel modules: Difficult, unsafe, not stable

Kernel components are well-bounded frameworks

Get out of the box:
• Can we have programmability in the kernel?
• How can this benefit to cloud-native environments?

Kernel

User space

Performance
Visibility

Flexibility

In-Kernel, Safe and Flexible Programs

Linux kernel / user space “paradox”
• Kernel: System awareness, but lacks flexibility
• User space: Programmable, but no direct access to
kernel structures, resources

• Kernel modules: Difficult, unsafe, not stable

Kernel components are well-bounded frameworks
Get out of the box:

• Can we have programmability in the kernel?
• How can this benefit to cloud-native environments?

Kernel

User space

Performance
Visibility

Flexibility

Meet

extended Berkeley Packet Filter
eBPF is a general purpose execution engine

• Kernel space
• Rework from cBPF
(1990s: tcpdump, seccomp)

• Bytecode injected with bpf() syscall
• Program attached to kernel hook, runs on events

• Performance
• In-kernel JIT-compiler (Just In Time)
• Maps well to native code

• Safety
• In-kernel verifier ensures termination and safety

• Versatility
• Programs: 31 types, some with multiple hooks
• Helper functions: 165
• Maps: 30 types

Kernel

User space

eBPF execution
engine

extended Berkeley Packet Filter
eBPF is a general purpose execution engine

• Kernel space
• Rework from cBPF
(1990s: tcpdump, seccomp)

• Bytecode injected with bpf() syscall
• Program attached to kernel hook, runs on events

• Performance
• In-kernel JIT-compiler (Just In Time)
• Maps well to native code

• Safety
• In-kernel verifier ensures termination and safety

• Versatility
• Programs: 31 types, some with multiple hooks
• Helper functions: 165
• Maps: 30 types

Kernel

User space

bpf()
system call

Tools

eBPF execution
engine

extended Berkeley Packet Filter
eBPF is a general purpose execution engine

• Kernel space
• Rework from cBPF
(1990s: tcpdump, seccomp)

• Bytecode injected with bpf() syscall
• Program attached to kernel hook, runs on events

• Performance
• In-kernel JIT-compiler (Just In Time)
• Maps well to native code

• Safety
• In-kernel verifier ensures termination and safety

• Versatility
• Programs: 31 types, some with multiple hooks
• Helper functions: 165
• Maps: 30 types

Kernel

User space

JIT-compiler

bpf()
system call

Tools

eBPF execution
engine

extended Berkeley Packet Filter
eBPF is a general purpose execution engine

• Kernel space
• Rework from cBPF
(1990s: tcpdump, seccomp)

• Bytecode injected with bpf() syscall
• Program attached to kernel hook, runs on events

• Performance
• In-kernel JIT-compiler (Just In Time)
• Maps well to native code

• Safety
• In-kernel verifier ensures termination and safety

• Versatility
• Programs: 31 types, some with multiple hooks
• Helper functions: 165
• Maps: 30 types

Kernel

User space

JIT-compiler Verifier

bpf()
system call

Tools

eBPF execution
engine

extended Berkeley Packet Filter
eBPF is a general purpose execution engine

• Kernel space
• Rework from cBPF
(1990s: tcpdump, seccomp)

• Bytecode injected with bpf() syscall
• Program attached to kernel hook, runs on events

• Performance
• In-kernel JIT-compiler (Just In Time)
• Maps well to native code

• Safety
• In-kernel verifier ensures termination and safety

• Versatility
• Programs: 31 types, some with multiple hooks
• Helper functions: 165
• Maps: 30 types

Kernel

User space

JIT-compiler Verifier

Maps

bpf()
system call

Tools

Helper
functions

eBPF execution
engine

Communicate With Maps

eBPF “Maps” are special kernel memory areas accessible
to a program

• Typically, “key/value” storage: hash map, array
• Shared between

• Several eBPF program runs
• Several eBPF programs
• eBPF and user space

Kernel

User space

bpf()
system call

Tools

eBPF program
A eBPF map

eBPF program
B

A Powerful Execution Engine

eBPF programs support many features:
• Up to one million instructions
• Tail calls
• eBPF-to-eBPF function calls
• Calls to specific kernel functions
• Bounded loops
• BTF (BPF Type Format)
• Sleepable programs
• Spinlocks
• …

Ever closer to “classic” code

Countless Use Cases

• Networking
• Hooks: TC (Traffic Control), XDP (eXpress Data Path), sockets
• Anti-DDoS
• Load-Balancing
• Routing, overlay, NAT
• TCP control

• Tracing & Monitoring
• Hooks: kprobes, uprobes, tracepoints, perf events
• Inspect, trace, profile kernel or user space functions
• Aggregate and correlate metrics in the kernel, return meaningful data

• Others
• Security (LSM)
• Infrared protocols
• File systems, storage, …

Tooling

LLVM Backend to the Rescue

The eBPF bytecode is usually generated with the clang/LLVM backend
Compile from C, store eBPF bytecode into an ELF object file:
$ clang -O2 -g -emit-llvm -c prog.c -o - | \

llc -march=bpf -mcpu=v2 -filetype=obj -o prog.o

Example: Networking
#include <arpa/inet.h>
#include <linux/bpf.h>
#include <linux/if_ether.h>

int block_non_ipv4(struct xdp_md *ctx)
{

void *data_end = (void *)(long)ctx->data_end;
void *data = (void *)(long)ctx->data;
struct ethhdr *eth = data;

/* Check packet length before dereferencing ”eth” pointer */
if (data + sizeof(*eth) > data_end)

return XDP_DROP;

/* Allow IPv4 packets, drop everything else */
if (eth->h_proto == htons(ETH_P_IP))

return XDP_PASS;

return XDP_DROP;
}

• Compile with clang
• Load from the object file with ip link set xdp

Example: Tracing With BCC
from bcc import BPF

b = BPF(text=”””
#include <uapi/linux/ptrace.h>

int trace_open(struct pt_regs *ctx, int dfd,
const char __user *filename, int flags)

{
u64 id = bpf_get_current_pid_tgid();
u32 pid = id >> 32;

bpf_trace_printk(”%d: open(%s, %x)\\n”, pid, filename, flags);

return 0;
}
”””)
b.attach_kprobe(event=”do_sys_open”, fn_name=”trace_open”).trace_print()

BCC
• Framework for eBPF tools
• Handles compilation (libllvm), provides Python wrappers
• Contains many examples

https://github.com/iovisor/bcc/

BCC Tools: Opensnoop

Trace usage of open() system call
• Attach a kprobe and a kretprobe to sys_do_open()
• Kprobe stores command name, filename, fd in a map
• Kretprobe retrieves info from map and prints it, with return value

./opensnoop.py
PID COMM FD ERR PATH
1576 snmpd 11 0 /proc/sys/net/ipv6/neigh/lo/retrans_time_ms
1576 snmpd 11 0 /proc/sys/net/ipv6/conf/lo/forwarding
1576 snmpd 11 0 /proc/sys/net/ipv6/neigh/lo/base_reachable_time_ms
1576 snmpd 9 0 /proc/diskstats
1576 snmpd 9 0 /proc/stat
1576 snmpd 9 0 /proc/vmstat
1956 supervise 9 0 supervise/status.new
1956 supervise 9 0 supervise/status.new
17358 run 3 0 /etc/ld.so.cache
[...]

BCC Tools: CPU Profiling, Flame Graphs
Profile CPU usage: “flame graph” indicating how much time functions run

• Poll software perf event CPU_CLOCK, collect stack data
• Info and flamegraph.pl script at https://github.com/brendangregg/FlameGraph

Flame Graph Search

URL Classifier

[u..

Soc..
[unk..
WebE..

[..
Web Content

[unk..
[unkn..

[unknown] _..

sshdDO.. firefox

[u..
[unknown]

Composi..
[unknown]

[unknown]
[unk..

[unknown]

[unknown]
[unk..

[u..

[..

[..

[unknown]

./profile.py -f 10 > data.out
$./flamegraph.pl data.out > graph.svg

Also usable for Python stack, Ruby, PHP, C*, Java, Node.js, …

https://github.com/brendangregg/FlameGraph

BCC Tools (2019)

Credits: Brendan Gregg

Bpftrace for Powerful One-Liners

bpftrace, built on top of BCC
• Awk-inspired syntax, one-liners or short scripts
• “Linux equivalent to DTrace”

Usage
• probe_type:probe_target /filter/ { command block }
• Built-in variables and functions (handle maps, draw histograms, …)

Tracing open()
bpftrace -e 'kprobe:do_sys_open { printf(”%d-%s: %s\n”, pid, comm, str(arg1)) }'

More examples
Read size distribution by process, present results as an histogram
bpftrace -e 'tracepoint:syscalls:sys_exit_read { @[comm] = hist(args->ret); }'

Count LLC cache misses by process name and PID (uses PMCs)
bpftrace -e 'hardware:cache-misses:1000000 { @[comm, pid] = count(); }'

https://github.com/iovisor/bpftrace

Bpftrace for Powerful One-Liners

bpftrace, built on top of BCC
• Awk-inspired syntax, one-liners or short scripts
• “Linux equivalent to DTrace”

Usage
• probe_type:probe_target /filter/ { command block }
• Built-in variables and functions (handle maps, draw histograms, …)

Tracing open()
bpftrace -e 'kprobe:do_sys_open { printf(”%d-%s: %s\n”, pid, comm, str(arg1)) }'

More examples
Read size distribution by process, present results as an histogram
bpftrace -e 'tracepoint:syscalls:sys_exit_read { @[comm] = hist(args->ret); }'

Count LLC cache misses by process name and PID (uses PMCs)
bpftrace -e 'hardware:cache-misses:1000000 { @[comm, pid] = count(); }'

https://github.com/iovisor/bpftrace

Build Your Own: Libraries

• C/C++: Libbpf, reference library

• Go: several libraries
• ebpf from Cloudflare and Cilium: Pure Go library
• libbpfgo: Wraps around libbpf
• gobpf: Wraps around bcc

• Rust:
• libbpf-rs: Wraps around libbpf
• RedBPF: Wraps around bcc

https://networkop.co.uk/post/2021-03-ebpf-intro/
https://github.com/cilium/ebpf
https://github.com/aquasecurity/tracee/tree/main/libbpfgo
https://github.com/iovisor/gobpf
https://github.com/libbpf/libbpf-rs
https://github.com/ingraind/redbpf

Bpftool: Manage eBPF Objects

Bpftool to manage and inspect eBPF objects
Load a program
bpftool prog load <program> <pinned_path>

List all BPF programs loaded on the system
bpftool prog show
38: cgroup_skb tag 6deef7357e7b4530 gpl

loaded_at 2021-04-01T12:28:28+0100 uid 0
xlated 64B jited 61B memlock 4096B

39: cgroup_skb tag 6deef7357e7b4530 gpl
loaded_at 2021-04-01T12:28:28+0100 uid 0
xlated 64B jited 61B memlock 4096B

58: xdp name process_packet tag 6deef7357e7b4530 offloaded_to nfp_p1
loaded_at 2021-04-01T21:37:12+0100 uid 0
xlated 5848B jited 14072B memlock 8192B map_ids 29,30

Bpftool: Inspect Programs

Dump eBPF bytecode
bpftool prog dump xlated id 4

0: (b7) r0 = 0
1: (95) exit

Dump JIT-ed instructions
bpftool prog dump jited id 4

0: push %rbp
1: mov %rsp,%rbp
4: sub $0x28,%rsp
b: sub $0x28,%rbp
f: mov %rbx,0x0(%rbp)

13: mov %r13,0x8(%rbp)
[...]
33: mov 0x18(%rbp),%r15
37: add $0x28,%rbp
3b: leaveq
3c: retq

Bpftool: Manage Maps
List all maps loaded on the system
bpftool map show
64: array name iterator.rodata flags 0x480

key 4B value 98B max_entries 1 memlock 4096B
btf_id 235 frozen

2731: prog_array name test_map flags 0x0
key 4B value 4B max_entries 4 memlock 4096B
owner_prog_type tracing owner jited

2768: array name rules flags 0x0
key 4B value 32B max_entries 3 memlock 4096B

Lookup a map entry (full map dump also available)
bpftool map lookup id 2768 key 0x01 0x00 0x00 0x00
key:
01 00 00 00
value:
11 02 00 40 8c a4 6f aa 8c 10 00 00 00 54 b7 f9
cc 71 d4 b1 89 b1 a7 9c 00 2a 5f 3d d6 85 45 f0

Update a map entry
bpftool map update id 182 key 3 0 0 0 value 1 1 168 192

More Bpftool!

Test-run programs with user-defined input data and context
bpftool prog run pinned /sys/fs/bpf/sample_ret0 data_in input data_out - repeat 10
0000000 0000 0000 0000 0000 0000 0000 0000 0000 |
0000010 2e3e 2e48 656c 6c6f 4b75 6265 436f 6e21 | .>.Hello KubeCon!
Return value: 0, duration (average): 58ns

More features
• Attach programs (not all types)
• List programs per cgroup, per network interface, per tracing hook
• Probe system support for eBPF features
• Dump data from event maps

Packaged for several distributions, source code in kernel repository

Documentation: see man pages

for
Cloud-Native Environments

The Force is Strong With eBPF
• Safety, performance, observability, versatility
• In the kernel, but flexible

• Available by default, no add-on required
• Stable UAPI
• Updates: no wait for upstream, no reboot, no loss of packet

• Container-aware
• Multiple hooks
• Kernel is the ideal location for managing containers

• Create what you need…
• Don’t just “program” a tool, “create”
• Solve real-world production challenges

• … Just what you need
• Skip unnecessary features
• Cleaner, faster, scalable

Linux kernel, base foundation for cloud-native environments: eBPF brings huge benefits!

Tracing Pods in a Kubernetes Cluster
Kubectl-trace to run bpftrace scripts on Pods

Credits: Lorenzo Fontana

On the same model: Inspektor Gadget for BCC tools

https://github.com/iovisor/kubectl-trace
https://github.com/kinvolk/inspektor-gadget

Mastering Networks With Cilium
Cilium: eBPF-based Networking, Observability, and Security

Kube-proxy replacement
• Iptables: thousands of rules, linear search / eBPF: Hash map lookups
• Bypass Netfilter/conntrack entirely

Network
device

Socket bu�er
allocation

TC
ingress

TC
egress

lxc0

eth0

host

pod

raw
PREROUTING conntrack

mangle
PREROUTING

nat
PREROUTING

FIB
lookup

mangle
FORWARD

filter
FORWARD

mangle
POSTROUTING

nat
POSTROUTING

Mastering Networks With Cilium
Cilium: eBPF-based Networking, Observability, and Security

Kube-proxy replacement
• Iptables: thousands of rules, linear search / eBPF: Hash map lookups
• Bypass Netfilter/conntrack entirely

Network
device

Socket bu�er
allocation

TC
ingress

TC
egress

lxc0

eth0

host

pod

Cilium’s Optimized Datapath
Example: Socket connection to Istio proxy for L7 policies

Node

Network

Socket Socket

eth0

Socket

TCP/IP

Ethernet

eth0

Socket

TCP/IP

Ethernet

Socket Socket

Service Service

Pod Pod

TCP/IP

Iptables

Ethernet

Loopback

TCP/IP

Iptables

Ethernet

Iptables Iptables

TCP/IP

Iptables

Ethernet

Loopback

TCP/IP

Iptables

Ethernet

Cilium’s Optimized Datapath
Example: Socket connection to Istio proxy for L7 policies

Node

Network

Socket Socket

eth0

Socket

TCP/IP

Ethernet

eth0

Socket

TCP/IP

Ethernet

Socket Socket

Service Service

Pod Pod

Cilium Use Cases for eBPF
Networking

• Highly efficient and flexible
networking

• Routing, overlay,
cloud-provider native

• IPv4, IPv6, NAT46
• Multi-cluster routing

Load balancing
• Highly scalable L3-L4 (XDP)
load-balancing

• Kubernetes services (replaces
kube-proxy)

• Multi-cluster
• Service affinity (prefer zones)

Network security
• Identity-based network
security

• API-aware security (HTTP,
gRPC, …), DNS-aware

• Transparent encryption

Observability
• Metrics (network, DNS,
security, latencies, HTTP, …)

• Flow logs (with datapath
aggregation)

Servicemesh
• Minimized overhead when
injecting servicemesh sidecar
proxies

• Istio integration Credits: Daniel Borkmann

In the Wild
Large scale production users

Facebook, Netflix, Google, Cloudflare, Cilium, …

Other projects rely on eBPF
Falco, Tracee, Hubble, Weave Scope, Suricata, …
Falco probes were recently contributed to the CNCF

A Thriving Ecosystem

Increasing number of projects

Start-ups
• New start-ups for continuous profiling, network analytics, security
• Acquisitions

• Pixie was acquired by New Relic
• Flowmill was acquired by Splunk

Kernel community
• One of the fastest growing subsystems in Linux
• Dedicated mailing list, 50 emails/day on average
• Three maintainers, five senior core reviewers (Facebook, Isovalent, Google)

First eBPF Summit (October 2020)

On the Rise

Wrapping Up

eBPF brings programmability to the kernel
• Safe, efficient, versatile, scalable
• Ideally located for gathering data or processing packets
in cloud-native environments

eBPF tooling
• Tracing/monitoring: BCC, bpftrace
• Development: libbpf, Go libraries
• Introspection, management: bpftool

eBPF on the rise
• Solves real-world problems

• See Cilium’s datapath and network policies
• Big actors run eBPF in production at scale
• Buzzing community

Ride the eBPF wave!

Thank You!

https://ebpf.io
https://cilium.io
quentin@isovalent.com

For more eBPF use cases, watch our other presentations:

• Tomorrow, 13:30 CEST (Networking)
Uncovering a Sophisticated Kubernetes Attack in Real-Time – Jed Salazar & Natália Réka Ivánkó, Isovalent

• Tomorrow, 14:20 CEST (Security + Identity + Policy)
How to Break your Kubernetes Cluster with Networking – Thomas Graf, Isovalent

Questions on eBPF after the Q&A session? Community Slack: https://ebpf.io/slack

https://ebpf.io
https://cilium.io
mailto:quentin@isovalent.com
https://ebpf.io/slack

	Meet
	 Tooling
	 forCloud-Native Environments

