L)

4
FRnOG J + Paris, 2018-03-16

bpfilter,

pare-feu Linux a la sauce eBPF

Quentin Monnet

<quentin.monnet@netronome.com>
@qeole

NETRONGME

mailto:quentin.monnet@netronome.com
https://twitter.com/qeole

A word about Netronome NETRONCOME

= 5O
]O E_@

& B 0g ®
J’x? :

w529

We make SmartNICs for data centers.

Features include vRouter, firewall, transparent HW offload for OvS... or eBPF!

Q. Monnet | bpfilter

eBPF: Programmability in the kernel

C source code ELF-compiled eBPF
bpf_prog.c bp1c prog.o

Y

Userspace

User program

Verifier y

]

Qﬁ' (tc / ip / bcc tools...)
%+
LLVM/clang

—————— bpf() syscall -———————----———-————————-—-

NETRONOGME

User program

-

* BPF program attached
* and run

Q. Monnet | bpfilter

« Array
» Hashmap
« LPM

eBPF hooks NETRONCGME

Networking
Socket
Tracing / Monitoring

XDP
(network driver)
Lightweight Tunnel
Encapsulation

Cgroup vi1/v2

E Others to come?

Q. Monnet | bpfilter

bpfilter NETRONCGME

bpfilter, a new back-end for iptables in Linux, based on eBPF

RFC posted to Linux network development (netdev) mailing list,
mid-February 2018

Code by David Miller (networking subsystem maintainer),
Alexei Starovoitov and Daniel Borkmann (BPF tree maintainers)

Not merged yet, everything that appears here is susceptible to change!

Q. Monnet | bpfilter 5/17

“BPF and firewalls? Reminds me of something.” NETRONGME

bpfilter not to be confused with...
xt_bpf module (attach BPF program to Netfilter hook; rather an
extension of xtables, and relies on classic BPF)

iptables -A INPUT \
-p udp --dport 53 \
-m bpf --bytecode "14,0 0 © 20,177 © 0 0,12 06 @ 0,7 © 0 0, \
64 6 0 0,21 0@ 7 124090465,64 © 0 4,21 0 5 1836084325, \
64 © © 8,21 0 3 56848237,80 0 0 12,21 0 1 0,6 0 0@ 1, \
600 0,”\
-j DROP

(Matches a DNS query for “example.com”, credit goes to Cloudflare)
nftables, designed as iptables/xtables successor
BPF in nftables (posted to netdev in reaction to bpfilter)

NFP firewall on NetBSD with classic BPF (# eBPF) and JIT-compiling

Q. Monnet | bpfilter 6/17

bpfilter in details NETRONCGME

The iptables binary is left untouched
Rules are translated into an eBPF program, attached to e.g. XDP

bpfilter.ko: new kind of kernel module, here for rule translation

+ ELF file running in user space!

+ Based on user mode helpers (UMH)

+ But shipped and built from kernel tree

+ Should be compatible with modprobe, modinfo, etc.

+ Run in a special thread, full privileges and in root namespace

Several objectives for this new kind of module

+ Easier to develop, to debug, to test

» Reduce attack surface, cannot crash the kernel

+ Clear decoupling between data plane (kernel) and control planes (user
space)

bpfilter.ko module communicates with the kernel via bpf() syscall

Q. Monnet | bpfilter 7117

bpfilter overview NETRONCGME

iptables

bpfilter.ko
(ELF kernel module)
Rule translation

O wait() translate
Y & attach
Userspace eBPF Special thread

——————————————————————————— bpf()syscall fFF=====-----ccamm -

JVeriﬁer —» JIT

Y
Y
Netfilter subsystem ﬁ
BPF program attached
and run
Kernel Driver

(TC, generic XDP) (native XDP) (hardware offload)

Q. Monnet | bpfilter

The benefits of bpfilter NETRONCGME

JIT compilation on x86_64, arm6s4, ppc6s, Sparcés, mipsés, S390X, arm32
Straightforward hardware offload on compatible NICs

BPF verifier: security and safety

User space ELF modules

Existing BPF tooling; possibly writing rules in C?

eBPF more and more used in the kernel, possibilities for integration
with other subsystems?

Q. Monnet | bpfilter 9/17

Example usage, from the PoC NETRONGME

./bpfilter.ko # Should eventually use modprobe

iptables -t filter -A INPUT -i eth1 -d 10.0.0.4/32 -j DROP
iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP all -- anywhere 10.0.0.4

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Q. Monnet | bpfilter 10/17

Rule translated to an eBPF program NETRONGME

bpftool prog dump xlated id 1337

o: (bf) r9 = ra 13: (2d) if ra1 > r3 goto pc+7

1: (79) r2 = (ubs)(r9 +o) 14: (07) r1 += -20

2: (79) r3 = (u6s)(r9 +8) 15: (61) r4 = (u32)(r1 +12)

3: (bf) r1 = r2 16: (55) if r4 != 0x200000a goto pc+1
4: (07) r1 += 14 17: (o4) (u32) r5 += (u32) 1

5: (bd) if r1i <= r3 goto pc+2 18: (61) r4 = (u32)(r1i +16)

6: (bsg) (u32) ro = (u32) 2 19: (55) if r4 != ox400000a goto pc+1
7: (95) exit 20: (04) (u32) r5 += (u32) 1

8: (bf) r1 = r2 21: (55) if r5 != ex2 goto pc+2

9: (bs) (u32) r5 = (u32) o 22: (bs) (u32) re = (u32) 1

10: (69) r4 = (ua6)(ri1 +12) 23: (95) exit

11: (55) if r4 != ox8 goto pc+9 24: (bsg) (u32) ro = (u32) 2

12: (07) r1 += 34 25: (95) exit

E.g. instruction #19: check on ex4eeeeea, which is “ntoh1(10.0.0.4)"

Q. Monnet | bpfilter 1/17

Quick performance test NETRONCGME

Comparison for simple packet drop between iptables, nftables, bpfilter

Setup:

One single iptables or nftables rule (as in previous example)
64 byte long packets

Hardware:
Intel® Xeon® CPU E5-2630 v3 @ 2.40 GHz

Single CPU, 8 cores 16 threads
Netronome Agilio CX, 1x 40 Gbps Ethernet

Many thanks to my colleague David Beckett for running the tests!

Q. Monnet | bpfilter 12/17

Mpps

Performance test results

70

60 =

50

40

30

20

NETRONOGME

40 Gbps

W iptables (legacy)

H nftables

W bpfilter (host driver XDP, JIT)
bpfilter (hardware offload)

Q. Monnet | bpfilter 13/17

Reception from the community (1/2) NETRONCGME

68 replies on the thread, many comments from Netfilter people

Performance

+ Many speed improvements from nftables over iptables
+ JIT-compiling, XDP hook, hardware offload: way faster, whereas Netfilter in
general was not good enough and failed to get a wide adoption

Replication of iptables back-end

+ Users’ assumptions regarding the behaviour of iptables, 100% perfect
replication is impossible
- Will make efforts to have the same, on as many use cases as possible

Why iptables in the first place?

+ Maintainers trying to phase out the legacy interface, why not base bpfilter
on nftables instead?

« iptables widely spread and will remain for at least a decade, better
improve performance and ease maintenance

Q. Monnet | bpfilter w17

Reception from the community (2/2) NETRONCGME

Security

+ Security concerns, mostly about the new ELF module mechanism
+ Safety and security through BPF verifier; ELF module no less secure than
kernel modules.

What about eBPF?

+ Not so much deployed as of today
+ Deployed in most major providers, used more and more in the kernel, for
various taks

... but, really, eBPF?

+ “BPF has many usability problems”
+ Simply not true

Q. Monnet | bpfilter 15/17

What happens next? NETRONCGME

PoC must be refined to get a more complete, optimised version
The proposal needs to be accepted by the community
bpfilter very likely to be accepted: backed by influent developers

Early March: follow-up for nftables, with a common intermediate
representation with iptables

Early March, too: repost of the patch for the new ELF kernel modules

Next:

+ bpfilter merge to the kernel?
+ nftables support?

+ User space tooling update?

+ More hardware offload?

Q. Monnet | bpfilter 16/17

Thank you! NETRONCGME

Questions?

Additional resources:

RFC on netdev mailing list “net: add bpfilter”, sent by Daniel Borkmann
https://www.mail-archive.com/netdev@vger.kernel.org/msg217095.html
and following emails of this thread

LWN.net: BPF comes to the firewalls
https://lwn.net/Articles/747551/

LWN.net: Designing ELF modules
https://lwn.net/Articles/749108/

Resources on BPF — Dive into BPF: a list of reading material
https:/ /gmonnet.github.io/whirl-offload/2016/09/01/ dive-into-bpf/

Netronome website , ..
https:/ /www.netronome.com/ We’re hiring!

Q. Monnet | bpfilter 17/17

https://www.mail-archive.com/netdev@vger.kernel.org/msg217095.html
https://lwn.net/Articles/747551/
https://lwn.net/Articles/749108/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://www.netronome.com/

