
• Paris, 2018-03-16

bpfilter,
pare-feu Linux à la sauce eBPF

Quentin Monnet
<quentin.monnet@netronome.com>

@qeole

mailto:quentin.monnet@netronome.com
https://twitter.com/qeole

A word about Netronome

We make SmartNICs for data centers.

Features include vRouter, firewall, transparent HW offload for OvS… or eBPF!

Q. Monnet | bpfilter 2/17

eBPF: Programmability in the kernel

User program
(tc / ip / bcc tools…)

LLVM/clang

Verifier

Userspace

Kernel

C source code
bpf_prog.c

ELF-compiled eBPF
bpf_prog.o

bpf() syscall

JIT

User program

Maps

BPF program attached
and run

• Array
• Hashmap
• LPM
• …

Q. Monnet | bpfilter 3/17

eBPF hooks

Lightweight Tunnel
Encapsulation

tc
(traffic control)

Cgroup v1/v2

Perf event

Tracepoint

XDP
(network driver)

Socket

Kprobe/Uprobe

Others to come?

Networking

Tracing / Monitoring

eBPF

Q. Monnet | bpfilter 4/17

bpfilter

bpfilter, a new back-end for iptables in Linux, based on eBPF

RFC posted to Linux network development (netdev) mailing list,
mid-February 2018

Code by David Miller (networking subsystem maintainer),
Alexei Starovoitov and Daniel Borkmann (BPF tree maintainers)

Not merged yet, everything that appears here is susceptible to change!

Q. Monnet | bpfilter 5/17

“BPF and firewalls? Reminds me of something.”

bpfilter not to be confused with…

xt_bpf module (attach BPF program to Netfilter hook; rather an
extension of xtables, and relies on classic BPF)
iptables -A INPUT \

-p udp --dport 53 \
-m bpf --bytecode ”14,0 0 0 20,177 0 0 0,12 0 0 0,7 0 0 0, \

64 0 0 0,21 0 7 124090465,64 0 0 4,21 0 5 1836084325, \
64 0 0 8,21 0 3 56848237,80 0 0 12,21 0 1 0,6 0 0 1, \
6 0 0 0,” \

-j DROP

(Matches a DNS query for “example.com”, credit goes to Cloudflare)

nftables, designed as iptables/xtables successor

BPF in nftables (posted to netdev in reaction to bpfilter)

NFP firewall on NetBSD with classic BPF (≠ eBPF) and JIT-compiling

Q. Monnet | bpfilter 6/17

bpfilter in details

The iptables binary is left untouched

Rules are translated into an eBPF program, attached to e.g. XDP

bpfilter.ko: new kind of kernel module, here for rule translation
• ELF file running in user space!
• Based on user mode helpers (UMH)
• But shipped and built from kernel tree
• Should be compatible with modprobe, modinfo, etc.
• Run in a special thread, full privileges and in root namespace

Several objectives for this new kind of module
• Easier to develop, to debug, to test
• Reduce attack surface, cannot crash the kernel
• Clear decoupling between data plane (kernel) and control planes (user
space)

bpfilter.ko module communicates with the kernel via bpf() syscall

Q. Monnet | bpfilter 7/17

bpfilter overview

bpfilter.ko
(ELF kernel module)

Rule translation

Userspace

Kernel

iptables

wait()

Netfilter subsystem

Verifier

bpf() syscall

JIT

BPF program attached
and run

Kernel
(TC, generic XDP)

Driver
(native XDP)

NIC
(hardware offload)

Special thread

translate
& attach

eBPF

Q. Monnet | bpfilter 8/17

The benefits of bpfilter

JIT compilation on x86_64, arm64, ppc64, sparc64, mips64, s390x, arm32

Straightforward hardware offload on compatible NICs

BPF verifier: security and safety

User space ELF modules

Existing BPF tooling; possibly writing rules in C?

eBPF more and more used in the kernel, possibilities for integration
with other subsystems?

Q. Monnet | bpfilter 9/17

Example usage, from the PoC

./bpfilter.ko # Should eventually use modprobe

iptables -t filter -A INPUT -i eth1 -d 10.0.0.4/32 -j DROP
iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP all -- anywhere 10.0.0.4

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Q. Monnet | bpfilter 10/17

Rule translated to an eBPF program

bpftool prog dump xlated id 1337
0: (bf) r9 = r1 13: (2d) if r1 > r3 goto pc+7
1: (79) r2 = (u64)(r9 +0) 14: (07) r1 += -20
2: (79) r3 = (u64)(r9 +8) 15: (61) r4 = (u32)(r1 +12)
3: (bf) r1 = r2 16: (55) if r4 != 0x200000a goto pc+1
4: (07) r1 += 14 17: (04) (u32) r5 += (u32) 1
5: (bd) if r1 <= r3 goto pc+2 18: (61) r4 = (u32)(r1 +16)
6: (b4) (u32) r0 = (u32) 2 19: (55) if r4 != 0x400000a goto pc+1
7: (95) exit 20: (04) (u32) r5 += (u32) 1
8: (bf) r1 = r2 21: (55) if r5 != 0x2 goto pc+2
9: (b4) (u32) r5 = (u32) 0 22: (b4) (u32) r0 = (u32) 1

10: (69) r4 = (u16)(r1 +12) 23: (95) exit
11: (55) if r4 != 0x8 goto pc+9 24: (b4) (u32) r0 = (u32) 2
12: (07) r1 += 34 25: (95) exit

E.g. instruction #19: check on 0x400000a, which is “ntohl(10.0.0.4)”

Q. Monnet | bpfilter 11/17

Quick performance test

Comparison for simple packet drop between iptables, nftables, bpfilter

Setup:

One single iptables or nftables rule (as in previous example)
64 byte long packets

Hardware:

Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz
Single CPU, 8 cores 16 threads
Netronome Agilio CX, 1 × 40Gbps Ethernet

Many thanks to my colleague David Beckett for running the tests!

Q. Monnet | bpfilter 12/17

Performance test results

40 Gbps

Q. Monnet | bpfilter 13/17

Reception from the community (1/2)

68 replies on the thread, many comments from Netfilter people

Performance
• Many speed improvements from nftables over iptables
• JIT-compiling, XDP hook, hardware offload: way faster, whereas Netfilter in
general was not good enough and failed to get a wide adoption

Replication of iptables back-end
• Users’ assumptions regarding the behaviour of iptables, 100% perfect
replication is impossible

• Will make efforts to have the same, on as many use cases as possible

Why iptables in the first place?
• Maintainers trying to phase out the legacy interface, why not base bpfilter
on nftables instead?

• iptables widely spread and will remain for at least a decade, better
improve performance and ease maintenance

Q. Monnet | bpfilter 14/17

Reception from the community (2/2)

Security
• Security concerns, mostly about the new ELF module mechanism
• Safety and security through BPF verifier; ELF module no less secure than
kernel modules.

What about eBPF?
• Not so much deployed as of today
• Deployed in most major providers, used more and more in the kernel, for
various taks

… but, really, eBPF?
• “BPF has many usability problems”
• Simply not true

Q. Monnet | bpfilter 15/17

What happens next?

PoC must be refined to get a more complete, optimised version

The proposal needs to be accepted by the community

bpfilter very likely to be accepted: backed by influent developers

Early March: follow-up for nftables, with a common intermediate
representation with iptables

Early March, too: repost of the patch for the new ELF kernel modules

Next:
• bpfilter merge to the kernel?
• nftables support?
• User space tooling update?
• More hardware offload?

Q. Monnet | bpfilter 16/17

Thank you!

Questions?

Additional resources:

RFC on netdev mailing list “net: add bpfilter”, sent by Daniel Borkmann
https://www.mail-archive.com/netdev@vger.kernel.org/msg217095.html
and following emails of this thread

LWN.net: BPF comes to the firewalls
https://lwn.net/Articles/747551/

LWN.net: Designing ELF modules
https://lwn.net/Articles/749108/

Resources on BPF — Dive into BPF: a list of reading material
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

Netronome website
https://www.netronome.com/ We’re hiring!

Q. Monnet | bpfilter 17/17

https://www.mail-archive.com/netdev@vger.kernel.org/msg217095.html
https://lwn.net/Articles/747551/
https://lwn.net/Articles/749108/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://www.netronome.com/

