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A word about Netronome

We make SmartNICs for data centers.

Features include vRouter, firewall, transparent HW offload for OvS… or eBPF!
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eBPF: Programmability in the kernel
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eBPF hooks
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bpfilter

bpfilter, a new back-end for iptables in Linux, based on eBPF

RFC posted to Linux network development (netdev) mailing list,
mid-February 2018

Code by David Miller (networking subsystem maintainer),
Alexei Starovoitov and Daniel Borkmann (BPF tree maintainers)

Not merged yet, everything that appears here is susceptible to change!
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“BPF and firewalls? Reminds me of something.”

bpfilter not to be confused with…

xt_bpf module (attach BPF program to Netfilter hook; rather an
extension of xtables, and relies on classic BPF)
iptables -A INPUT \

-p udp --dport 53 \
-m bpf --bytecode ”14,0 0 0 20,177 0 0 0,12 0 0 0,7 0 0 0, \

64 0 0 0,21 0 7 124090465,64 0 0 4,21 0 5 1836084325, \
64 0 0 8,21 0 3 56848237,80 0 0 12,21 0 1 0,6 0 0 1, \
6 0 0 0,” \

-j DROP

(Matches a DNS query for “example.com”, credit goes to Cloudflare)

nftables, designed as iptables/xtables successor

BPF in nftables (posted to netdev in reaction to bpfilter)

NFP firewall on NetBSD with classic BPF (≠ eBPF) and JIT-compiling
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bpfilter in details

The iptables binary is left untouched

Rules are translated into an eBPF program, attached to e.g. XDP

bpfilter.ko: new kind of kernel module, here for rule translation
• ELF file running in user space!
• Based on user mode helpers (UMH)
• But shipped and built from kernel tree
• Should be compatible with modprobe, modinfo, etc.
• Run in a special thread, full privileges and in root namespace

Several objectives for this new kind of module
• Easier to develop, to debug, to test
• Reduce attack surface, cannot crash the kernel
• Clear decoupling between data plane (kernel) and control planes (user
space)

bpfilter.ko module communicates with the kernel via bpf() syscall
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bpfilter overview
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The benefits of bpfilter

JIT compilation on x86_64, arm64, ppc64, sparc64, mips64, s390x, arm32

Straightforward hardware offload on compatible NICs

BPF verifier: security and safety

User space ELF modules

Existing BPF tooling; possibly writing rules in C?

eBPF more and more used in the kernel, possibilities for integration
with other subsystems?
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Example usage, from the PoC

# ./bpfilter.ko # Should eventually use modprobe

# iptables -t filter -A INPUT -i eth1 -d 10.0.0.4/32 -j DROP
# iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP all -- anywhere 10.0.0.4

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
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Rule translated to an eBPF program

# bpftool prog dump xlated id 1337
0: (bf) r9 = r1 13: (2d) if r1 > r3 goto pc+7
1: (79) r2 = (u64 )(r9 +0) 14: (07) r1 += -20
2: (79) r3 = (u64 )(r9 +8) 15: (61) r4 = (u32 )(r1 +12)
3: (bf) r1 = r2 16: (55) if r4 != 0x200000a goto pc+1
4: (07) r1 += 14 17: (04) (u32) r5 += (u32) 1
5: (bd) if r1 <= r3 goto pc+2 18: (61) r4 = (u32 )(r1 +16)
6: (b4) (u32) r0 = (u32) 2 19: (55) if r4 != 0x400000a goto pc+1
7: (95) exit 20: (04) (u32) r5 += (u32) 1
8: (bf) r1 = r2 21: (55) if r5 != 0x2 goto pc+2
9: (b4) (u32) r5 = (u32) 0 22: (b4) (u32) r0 = (u32) 1

10: (69) r4 = (u16 )(r1 +12) 23: (95) exit
11: (55) if r4 != 0x8 goto pc+9 24: (b4) (u32) r0 = (u32) 2
12: (07) r1 += 34 25: (95) exit

E.g. instruction #19: check on 0x400000a, which is “ntohl(10.0.0.4)”
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Quick performance test

Comparison for simple packet drop between iptables, nftables, bpfilter

Setup:

One single iptables or nftables rule (as in previous example)
64 byte long packets

Hardware:

Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz
Single CPU, 8 cores 16 threads
Netronome Agilio CX, 1 × 40Gbps Ethernet

Many thanks to my colleague David Beckett for running the tests!
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Performance test results

40 Gbps
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Reception from the community (1/2)

68 replies on the thread, many comments from Netfilter people

Performance
• Many speed improvements from nftables over iptables
• JIT-compiling, XDP hook, hardware offload: way faster, whereas Netfilter in
general was not good enough and failed to get a wide adoption

Replication of iptables back-end
• Users’ assumptions regarding the behaviour of iptables, 100% perfect
replication is impossible

• Will make efforts to have the same, on as many use cases as possible

Why iptables in the first place?
• Maintainers trying to phase out the legacy interface, why not base bpfilter
on nftables instead?

• iptables widely spread and will remain for at least a decade, better
improve performance and ease maintenance
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Reception from the community (2/2)

Security
• Security concerns, mostly about the new ELF module mechanism
• Safety and security through BPF verifier; ELF module no less secure than
kernel modules.

What about eBPF?
• Not so much deployed as of today
• Deployed in most major providers, used more and more in the kernel, for
various taks

… but, really, eBPF?
• “BPF has many usability problems”
• Simply not true
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What happens next?

PoC must be refined to get a more complete, optimised version

The proposal needs to be accepted by the community

bpfilter very likely to be accepted: backed by influent developers

Early March: follow-up for nftables, with a common intermediate
representation with iptables

Early March, too: repost of the patch for the new ELF kernel modules

Next:
• bpfilter merge to the kernel?
• nftables support?
• User space tooling update?
• More hardware offload?
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Thank you!

Questions?

Additional resources:

RFC on netdev mailing list “net: add bpfilter”, sent by Daniel Borkmann
https://www.mail-archive.com/netdev@vger.kernel.org/msg217095.html
and following emails of this thread

LWN.net: BPF comes to the firewalls
https://lwn.net/Articles/747551/

LWN.net: Designing ELF modules
https://lwn.net/Articles/749108/

Resources on BPF — Dive into BPF: a list of reading material
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

Netronome website
https://www.netronome.com/ We’re hiring!

Q. Monnet | bpfilter 17/17

https://www.mail-archive.com/netdev@vger.kernel.org/msg217095.html
https://lwn.net/Articles/747551/
https://lwn.net/Articles/749108/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://www.netronome.com/

