
Data protection in Multipath WSNs
Quentin MONNET

Lab. LACL, Université Paris-Est
LACL (EA 4219), UPEC
F-94010 Créteil, France
quentin.monnet@lacl.fr

Lynda MOKDAD
Lab. LACL, Université Paris-Est

LACL (EA 4219), UPEC
F-94010 Créteil, France
lynda.mokdad@u-pec.fr

Jalel BEN OTHMAN
Lab. L2TI, Université Paris 13

L2TI (EA 3043), UP13
F-93430 Villetaneuse, France

jbo@univ-paris13.fr

Abstract—Used in areas such as pollution measurement or
data gathering over battlefields, wireless sensor networks have
attracted more and more attention over the last years. The
deployment of such a network is accompanied by several se-
curity issues, including data confidentiality. Robust encryption
algorithms addressed to network communication exist, but they
do not always match the low resources restrictions — low
processor, memory, limited energy — set upon the sensors. To
overcome this, other, simpler solutions have been proposed, such
as the Securing Data based on Multi-Path routing method, or
an application of the Shamir’s Secret Sharing Scheme, which
both use distinct paths in the network to send pieces of data
obtained by splitting the original message. This paper addresses
the two methods named above, and proposes a solution based
on traffic classification, using alternatively the Securing Data
based on Multi-Path routing method, the Shamir’s Secret Sharing
Scheme, and strong encryption algorithms.

Index Terms—Wireless communication, Sensor networks,
Network-level security and protection.

I. INTRODUCTION

Wireless sensor networks, often abbreviated WSNs, con-
sist in sets of self-deployed small devices used to perform
measurement on their immediate environment, and to forward
collected data to a so-called base station through wireless com-
munication. Sensors are supposed to have low computation
capabilities, few available memory, and limited energy — to
spend with care (in most cases batteries won’t be reloaded).
Over the last decades, the use of those networks have been
introduced into a variety of application domains, including,
but not limited to: pollution measurement, detection of forest
fires, monitoring of thresholds of nuclear radioactivity, military
communication over battlefields.

Amongst the deployed WSNs, some need to afford guar-
anties regarding data confidentiality. When the requirements
are high, the use of strong cryptography to cipher the messages
becomes unavoidable. But let’s imagine an application which
produces some messages of critical importance, along with
trivial data. Is it worth encrypting the whole thing, knowing
that encryption consumes both computational and memory
resources, and costs processing time? In this article we expose
in detail two existing methods based on multi-path routing
and providing several degrees of confidentiality, the Securing
Data based on Multi-Path routing (SDMP) and a Threshold
Sharing Scheme: Shamir’s Secret Sharing Scheme (SSSS). We
also propose a solution based on traffic classification to assign

one of the three methods — the two mentioned above, and
encryption — to each packet in the network according to its
level of required confidentiality (that is, to the criticalness of
its content).

Each of those methods have already been presented for use
in wireless networks, and in particular in WSNs. A Threshold
Sharing Scheme, for example, consists roughly in splitting
the message into n shares such that k or more shares out
of the n leads to the message reconstruction, whereas any
set of k − 1 shares is unexploitable. Although the scheme
was originally designed for sharing a secret between several
participants, it has also been proposed for securing network
transmissions. A recent suggestion is that MPLS networks
security, for example, could be enhanced with this method
[1]. By sending the n shares through n distinct paths, often
available in networks based on this protocol, the transmitter
ensures that an attacker observing the traffic on at most
k − 1 paths between the nodes will not be able to recover
the message content. Similar proposals had been made for
securing wireless ad-hoc networks, without MPLS, but still
relying on distinct paths [2], [3].

The general use of cryptography to ensure multiple as-
pects of privacy in WSNs has of course drawn interest from
researchers, and led to the creation of many protocols, for
both confidentiality [4] and authentication [5]. Resistance to
“denial of service” attacks, coming from the outside as well
as from the inside of the network, is also a deeply investigated
topic concerning WSNs security. For instance we propose
in [6] a solution for detecting and reacting to compromised
nodes trying to saturate bandwidth in clustered networks. To
this aim, some nodes are assigned a monitoring role, which
is periodically renewed so as to distribute the energy load
evenly among the cluster. Also, the solution is modeled in
terms of Markov chains and Petri networks. More generally,
most of the identified attacks regarding WSNs and protocols
designed to circumvent them are resumed in several state-
of-the-art articles [7], some being dedicated to multi-path
routing solutions [8]. In this paper we propose a solution
based on traffic classification, using alternatively the Securing
Data based on Multi-Path routing method, the Shamir’s Secret
Sharing Scheme, and strong encryption algorithms.

The organization of the rest of the article comes as fol-
lows: in section II we present our solution based on traffic
classification, and explain in detail how the application of the



SDMP (subsection II-B) and SSSS (subsection II-C) methods
may ensure confidentiality in WSNs. Some aspects of those
methods, along with the use of “classical” encryption, are
compared in section III. Finally, we conclude and give future
research perspectives in section IV.

II. PROPOSED SOLUTION

A. Traffic classification

The proposed solution relies on classification of the packets
according to their respective importance. The emitting node
must use a traffic shaper so as to mark the packets as of low,
middle or high importance. Distinction between the degrees of
importance is set by the user; it may depend on the packet type
(protocol in use, destination port, et cætera) as well as on the
nature of carried data. Each node of the network should embed
a shaper to determine the category to which its enqueued
packets belong.

Once the degree of importance of an outgoing packet has
been determined, it is sent with the associated method:

• for low importance packets: weak (but fast) SDMP
method (see subsection II-B);

• for middle importance packets: Shamir’s Secret Sharing
Scheme (see subsection II-C);

• for high importance packets: ciphering (see subsec-
tion II-D).

B. Low importance traffic: SDMP method
1) Sending: The SDMP (Securing Data based on Multi-

Path routing) method [9] basically consists in:
1) dividing the packet into n pieces;
2) “hiding” nearly all pieces with a logical exclusive OR

(that is, a XOR) operation;
3) sending the pieces to the target node via n distinct paths.
Of course this method requires n distinct paths to be

available between the emitting node and the recipient of the
packet.

The actual packet splitting for SDMP is very simple: a
message of length lm is split into n pieces of length lp = ⌈ lm

n ⌉.
We want all the pieces to have the same length. So if lm

n is not
an entire value, padding must be added to the message before
splitting. We obtain n pieces p1, p2, . . . , pn. Each piece pi is
then “hidden” by applying to its content a XOR operation with
the content of the pi+1 piece (and pn is XORed with p1). There
is one exception: a single piece pk, with k being a random
number such as 1 ≤ k ≤ n, remains clear and will act as a
“key” to recover the original message. We now have n pieces
p′1,2 = p1 ⊕ p2, p′2,3 = p2 ⊕ p3, . . . , p′k−1,k = pk−1 ⊕ pk, pk
(unchanged), p′k+1,k+2 = pk+1⊕ pk+2, . . . , p′n−1,n = pn−1⊕ pn,
p′n,1 = pn⊕ p1. Each piece pi is sent over one of the n distinct
paths in the network.

2) Receiving: The target node will not be able to recover
the whole message unless it receives all the pieces. Starting
with pk — which was sent in clear text — and p′k−1, the target
node will retrieve pk−1, then pk−2, et cætera, until all pieces
pi are recovered. The last step is the reconstruction of the
original message by concatenating the different pieces.

An attacker trying to intercept the exchanged message will
not be able to recover the full content of the message unless
it catches every single piece, which means that all the paths
that were used are compromised.

3) New header: Actually, if one wants to implement SDMP,
a few supplementary information must be sent along with the
pieces. For each piece, the number i of the piece must be sent,
so that the target node may be able to know in which order the
recovered pieces must be concatenated. If padding was added
to one or more pieces, it should also be indicated. A two (for
instance) byte-long header containing those numbers should
be added at the beginning of each piece to send.

The Figure 1 shows a concrete example of the effectuation
of the SDMP method.

4) Signaling: Furthermore, the recipient node also needs to
know:

• how many pieces constitute the original message;
• what the number of the “key” piece is.

The number of pieces and the designation of the “key” piece
form what we call the signaling for this method. It could be
fixed. That is to say, the user could initially choose one value n
in which to split all the messages, and one value k that would
represent the “key” piece for each set of pieces resulting from
a splitting. But all nodes in the network do not have the same
connectivity index, and it is very likely that some couple of
nodes will have more distinct paths available to communicate
between them than some other couples. So n should depend
on the number of available distinct paths, and must be sent for
each message. Regarding the k value, it indicates which piece
of the original message is sent in clear text; so it should be
chosen at random for each message, to improve security.

k and n are both necessary for the reconstruction of the
original message. Hence those values should be sent with
a minimum of caution, as they would help an attacker to
reconstruct the message, were they to get captured. There are
two ways to transmit signaling from the emitting node to the
recipient:

• out-of-band signaling: the first way consists in sending
the n and k values in a specific packet, different from
the pieces containing the data. In no case it should be
sent through the same path than the “key” piece of data.
At least it should be sent through a distinct path; if
possible, it is ciphered (encrypting the “key” piece only
would require less resources than encrypting the whole
message).

• in-band signaling: the second way to transmit signaling
values is by including it to the pieces containing the data.
Two associated fields must be added at the beginning
of those pieces. n and k should not be inserted into
each piece of the original message; instead, it should be
“divided” so that the recipient node needs to combine
several pieces to get the signaling values. So the n and
k values are split into several sets of bits, each being
included in a different piece of data. The recipient node
retrieves n and k by XORing all n and k fields from the



Figure 1. SDMP method: concrete example, with n = 4, key = p2

different pieces. But the node can not be sure that all the
sets of bit reached it, since it ignores how many pieces
should be received. So a third field must be added to the
pieces of data, containing a mask for the bits which are
actually sent in this piece.

Note that for more clarity, signaling was not represented on
Figure 1.

5) Possible ameliorations: Two improvements with regards
to the original SDMP method are proposed to enhance the
security:

• sending p′′k,k+1,k+2 instead of pk as a “key piece”. That
is, the “key piece” should be created by XORing pk and
p′k+1,k+2 (for example) so as not to send pk in clear
text. When receiving both p′k+1,k+2 and p′′k,k+1,k+2, the
recipient node will be able to recover pk;

• changing the XORing (and recovering) order for the
pieces. For instance, if n is equal to 5, instead of sending
p′1,2, p′2,3, p′3,4 and p′4,5, one could create and send p′1,4,
p′4,2, p′2,3 and p′3,5. It would make it more difficult for an
attacker ignoring the order of reconstruction to recover
the content of the pieces.

Of course, each one of these improvements implies more
signaling data to send.

C. Middle importance traffic: Shamir’s Secret Sharing
Scheme

1) Principle: The SDMP solution is good for low impor-
tance packets, mostly because it is very fast to reconstruct the
original message. But if a single piece of the message gets lost,
retrieving the whole set of data becomes impossible. On the
other hand, if an attacker manages to grasp the “key piece” and
several other pieces which content may be retrieved, a large
amount of data will leak. Hence we propose to use a (k, n)
Threshold Sharing Scheme for middle importance packets.

A Threshold Sharing Scheme (TSS) is an algorithm used
so as to share a secret between several participants. Each
of the n participants is given a personal secret share (or
shadow) in such a way that any k of them (1 < k ≤ n) may
combine their shares to retrieve the original secret, whereas
k − 1 participants will not obtain any information about it.
There are several existing schemes. Some, for instance, are
based on matrix projection [10]. Here we only present a well-
known TSS: a variation of Shamir’s Secret Sharing Scheme
[11]. This approach is based on the Lagrange interpolation
formula for polynomials. Let p be a prime number and f be
a polynomial function of degree k−1 such as:

f (x) = (ak−1xk−1 + · · ·+a2x2 +a1x+a0) mod(p) (1)

The coefficients a0, . . . , ak−1 are elements over a finite field



Zp. According to Shamir’s original scheme, a0 is the shared
secret, and all other coefficients are chosen at random. If one
knows k distinct couples of values (xi, yi) with yi = f (xi), then
the Lagrange linear interpolation formula makes it possible to
represent the polynomial function in another way:

f (x) =
k

∑
i=1

yi ∏
1≤ j≤k

j ̸=i

x− x j

xi − x j

 (2)

and hence to retrieve the coefficients. Note that every operation
is made over the finite field Zp. Practically, it means that
additions and subtractions are made modulo p, subtracting b
from a is adding b’s opposite (p−b) to a, and dividing a into
b comes to multiply a with b’s inverse in Zp (the inverse is c
such as (b · c) mod(p) = 1, it does exist since p is prime).

A basic analogy of this method with geometry would be
the following: thanks to Lagrange formula, two points on a
plan are enough to determine the 1-degree polynomial function
associated with a straight line. Note that three aligned points
would also enable us to retrieve the polynomial, but two
are enough. In this case, the shared secret is the 0 degree
coefficient of the coefficient of the polynomial. Each of the
n participants will be given the coordinates of one point of
the straight line. A single participant alone is totally enable to
retrieve the polynomial (there are an infinity of lines passing
by a given point). There must be at least k = 2 cooperating
participants to obtain the coefficients of the polynomial, and
thus to retrieve the shared secret. In the same way, Lagrange
interpolation makes it possible to find the polynomial function
associated with a parabola from three points, with a hyperbola
from four points, et cætera.

When applied to network communication, original Shamir’s
Secret Sharing Scheme introduces much overhead. To bypass
this a slight modification is realized: in the rest of this article
the shared secret is no more constituted only by the 0 degree
coefficient (a0) of the polynomial function. Instead, it embeds
the whole set of coefficients (i.e. ak−1, . . . , a1, are part of
the original secret, as well as a0, and are no more chosen
at random). As we are working with bytes (values from 0
to 255), we choose p equal to 257 (the lower prime number
strictly greater than 255).

2) Message sending: As for the SDMP method, the original
packet M is padded (if necessary) and n shares are created
before being sent. A set containing any k shares over the n
created will be necessary to retrieve the full-length message.
So as to enhance the security of the communication, we will
choose k equal to n. In that way the recipient node must receive
each one of the different shares to achieve the reconstruction
process; were the attacker to lack a single share, the attack
would remain unsuccessful.

Contrary to the pieces of the SDMP method, the shares
created with the TSS method do not result directly from the
original message splitting. Instead of being divided into n
pieces of equal length, like for SDMP, M is at first divided
into several chunks of length k. Let l be the number of chunks

created. Each chunk i (over the l chunks) contains the k
coefficients ai,k−1, . . . , ai,1, ai,0, which form a polynomial
function fi(x) = ai,k−1xk−1 + · · ·+ ai,1x + ai,0. Each share j
(over the n shares) is then created by choosing a unique
value x j for x: the values f1(x j), . . . , fl(x j) are computed
and concatenated to form a share of length l.

There is no need to “order” the different shares before
sending them. But it is necessary to indicate for each share
the value x j that was chosen to compute its yi = fi(x j) values.
The minimal number (k) of shares needed to reconstruct the
original message M must also be added; otherwise, the receiver
node would not know whether it should attempt to retrieve M
or whether it lacks some shares. It may also be necessary to
indicate the amount of padding bytes that were added to M.

Once complete, each share is then sent through the network
via a distinct path.

Here is a concrete example of the creation of the
shares. We want to send the thirteen following (decimal)
bytes over three distinct paths, using Shamir’s secret share:
72 101 108 108 111 44 32 119 111 114 108 100 33. Here are
the different steps to do so:

1) We have three distinct paths, so we choose n = 3. As
mentioned earlier, we choose k = n, so k = 3. We also
have p = 257 (lowest prime number greater than the
maximal byte value, 255).

2) The message has a length of 13 bytes. It should be a
multiple of k, so we add two bytes for padding: 0 and 1.

3) We split the padded message into chunks of length k. We
obtain four chunks: 72 101 108, 108 111 32, 44 119 111,
114 108 100 and 33 0 1.

4) We get the five following polynomial functions:
f1(x) = (72x2 + 101x + 108) mod(257)
f2(x) = (108x2 + 111x + 32) mod(257)
f3(x) = (44x2 + 119x + 111) mod(257)
f4(x) = (114x2 + 108x + 100) mod(257)
f5(x) = (33x2 + 1) mod(257)

(3)

5) We choose n distinct and non-zero values for x. For
instance, x1 = 1, x2 = 3, and x3 = 4.

6) We compute the shares’ content. The first share (s1)
is made of f1(x1), f2(x1), f3(x1), f4(x1) and f5(x1).
We compute and concatenate these values. So the data
of s1 is 24, 251, 17, 65, 34. The other shares s j are
computed in the same way, by using the associated x j
value. Their content is displayed in Table I.

Table I
CONTENT OF THE COMPUTED SHARES

Share Content

s1 24 251 17 65 34
s2 31 52 93 165 41
s3 122 148 6 43 15

After inserting a new header containing x j, k and the
number of padding bytes, we get the shares s j (for s1,



the header is: 1, 3, 2).
(Note that each share contains data about each one of the
bytes from the original message. There is no ordering
between the shares, none “comes last”, so the number
of padding bytes is the same for every share).

7) Headers of the lower layers are added, and the shares
are sent through the network, each one over a distinct
path.

3) Message reconstruction: Before attempting to recon-
struct the original message M, the recipient node must check
that it has received enough shares (i.e. that it has received
at least k shares). Otherwise the retrieved data will not be
consistent. This verification is easy to realize if k has been
inserted in a new header for the shares, as explained for the
shares’ construction. Then, any set of k shares (among all the
one received for a message M) may be used with Lagrange
linear interpolation formula (see equation 2) so as to get back
the coefficients ai, hence the data of M.

Let us get back to our concrete example. The examination
of the k-value field of the shares’ headers tells us that three
different shares are needed to proceed to the reconstruction.
Once the three shares received, we will apply Lagrange
formula to the f1(x j) values (1 ≤ j ≤ 3). Here is the resulting
expression:

f1(x) =
i=3

∑
i=1

 f1(xi) ∏
1≤ j≤3

j ̸=i

x− x j

xi − x j

 (4)

So we have:

f1(x) = (t1,1(x)+ t1,2(x)+ t1,3(x)) mod(257) (5)

where

t1,1(x) = f1(x1) ·
x− x2

x1 − x2
· x− x3

x1 − x3
= 24 · x−3

1−3
· x−4

1−4

t1,2(x) = f1(x2) ·
x− x1

x2 − x1
· x− x3

x2 − x3
= 31 · x−1

3−1
· x−4

3−4

t1,3(x) = f1(x3) ·
x− x1

x3 − x1
· x− x2

x3 − x2
= 122 · x−1

4−1
· x−3

4−3

(6)

hence:
t1,1(x) = 24 · (x−3)(x−4)

255 ·254
= 24 ·6−1 · (x−3)(x−4)

t1,2(x) = 31 · (x−1)(x−4)
2 ·256

= 31 ·255−1 · (x−1)(x−4)

t1,3(x) = 122 · (x−1)(x−3)
3 ·1

= 122 ·3−1 · (x−1)(x−3)
(7)

so
t1,1(x) = 24 ·43 · (x2 +250x+12) = 4 · (x2 +250x+12)

t1,2(x) = 31 ·128 · (x2 +252x+4) = 113 · (x2 +252x+4)

t1,3(x) = 122 ·86 · (x2 +253x+3) = 212 · (x2 +253x+3)
(8)

and finally we sum up all t1,i to find:

f1(x) = 72x2 +101x+108 (9)

The three coefficients (a2 = 72, a1 = 101 and a0 = 108) of this
polynomial are the first three bytes of our original message. By
applying the same procedure to the other fi(x) from the shares,
we would get the remaining bytes from the initial message. In
the end, the only step that would remain would be the removal
of the two padding bytes from the three bytes obtained with
f5, to get the full original message.

D. High importance traffic: ciphering

For important packets that embed data expected to remain
confidential whatever happens in the network, none of the
above solutions is able to provide enough guaranties in terms
of security. The only way to ensure that data remains confi-
dential is to use a well-tried strong encryption algorithm. We
do not either present or recommend any particular algorithm
in this paper. Several algorithms among the many that exist
have been specifically designed for WSNs.

III. COMPARISON OF THE DIFFERENT METHODS

A. Confidentiality

While a good encryption algorithm is expected to provide
a very good confidentiality level even if most, or all, packets
are captured by an attacker, the SDMP and TSS methods are
not as efficient to protect data. This is why these methods are
proposed for middle and low importance packets.

The security of the SDMP method is even lower than for
the Threshold Sharing Scheme, especially if the “key” piece is
sent in clear text. If captured, this piece will instantly reveal
its content to the attacker. Moreover, it would also permit to
retrieve the content from other pieces (for instance, if the key
piece pk, and the pieces p′k−1,k and p′k−2,k−1 are caught, all of
them are easy to retrieve). Lacking signaling may delay the
retrieval of data: if the attacker does not know which piece
is the key, it may take longer to extract the original message
(although there are not enough possible combinations to resist
to a “brute force” reconstitution). This is why signaling should
be handled with care. Finally, it is worth noticing that single
XOR operations between pieces are not a very efficient way
to encrypt it, and that it would probably not resist to statistical
analysis. Some byte patterns could indeed appear repeatedly
in the pieces, or from one piece to another.

Shamir’s Secret Sharing Scheme offers a better protection.
If we choose k and n such that k = n, a single missing share
prevents an attacker to get any information about the content
of the original message. As a consequence, an attacker must
be able to listen over each of the distinct paths that are used
to forward the shares. Due to the wireless aspect inhering in
WSNs, this condition can be bypassed if the attacker is located
close enough to its target. In this case, the attacker is able
to intercept all the emitted shares, before they are routed to
distinct paths. And note that again, repeated patterns in the
original data could produce similar patterns in the share, and
provide matter for successful statistical analysis.



B. Complexity

The SDMP method is by far the easiest method to im-
plement. Each piece results directly from the splitting of the
original message, and only needs a new header and a single
XOR operation before sending.

The secret sharing scheme is also simple, but requires more
operations to create the shares. The total number of operations
(additions, multiplications and modulos) grows exponentially
with k (complexity in O(k2)). Nevertheless it remains few
demanding in resources for low values of k. As the number
of available distinct paths for a given node will seldom reach
high values, k should remain low, causing the algorithm to
remain cheap and fast.

A strong encryption protocol, by contrast, is far more
demanding in resources, and more complex to implement. This
is the price for a better confidentiality.

C. Overhead

Let lm be the length of the original message.
With the SDMP method, the message is split into n pieces

of length lp = ⌈ lm
n ⌉ (once padded). To each piece we must add

the piece number and the padding length lpad in a new header.
Signaling must also be taken into account. Out-of-band signal-
ing produces less signaling data, but requires a full packet with
lower layers headers. For in-band signaling, we will count four
supplementary fields (k, n, and respective masks — see II-B4
and explanations about the signaling for SDMP). So the final
length for data, signaling and inserted headers is (in the case
of in-band signaling): n · (lp + 6) = lm(+lpad)+ 6n; in other
words, 6n bytes of overhead are created. Lower layers headers
(e.g. link layer, network layer) will constitute the greatest part
of the overhead: they will be multiplied by n (one per piece
to send).

This is quite similar for Shamir’s Secret Sharing Scheme:
we basically have n shares of length ⌈ lm

k ⌉ (once the message
is padded, and with k = n), to which we add a new header
containing k and the padding length. The final length for data
and inserted headers is: lm(+lpad)+ 2n. Overhead is slightly
lower than for the SDMP method, but the lower layers headers
are again multiplied by n, so the difference for the two methods
is insignificant.

Encryption algorithms often add new headers and initiali-
zation vectors which end up in consequent overhead. On the
other hand, the packets are not split into pieces or shares,
which prevent the replication of lower layers headers. There-
fore, the method which adds the greatest overhead will depend
on the value of n and on the amount of overhead that the
chosen encryption algorithm will create for each packet.

D. Fault resistance

The SDMP method offers no fault resistance. The pieces
are created through a kind of chained encryption process. If
one link of the chain is missing, i.e. if one piece is lost, all
the following pieces in the chain become useless and can not
get unencrypted.

This is even worse with the Threshold Sharing Scheme:
since we chose k = n, should a single share get lost, it would

cause every other share to become worthless. Remember
that this is the principle of the secret sharing: with k − 1
participants, no information can be obtained about the shared
message. This method introduces a very interesting mechanism
for fault tolerance, however, when k is lower than n. In this
case, all the data is retrieved even if any n−k shares are lost;
but this is beyond the scope of our analysis.

IV. CONCLUSION

If sensor nodes in a WSN have to send packets with different
levels of importance, it may be worth to avoid to use systemat-
ically heavy encryption algorithms. We propose in this paper
a solution using a traffic shaper to determine the degree of
criticalness of each packet to send. According to this degree
and to the number of available distinct paths between the
sender and the target node, one of three securing methods is
used: the Securing Data based on Multi-Path routing method,
Shamir’s Secret Sharing Scheme, or strong cryptography. We
have detailed the operation and provided concrete examples for
the first two methods, before comparing which confidentiality
guaranties, which complexity, which additional overhead and
which fault resistance come with each one of the three methods
(SDMP, SSSS, and regular encryption).

Future works include simulating the solution over the ns-3
simulator, in order to evaluate the gain in performance and in
energy provided by this model.

REFERENCES

[1] S. Alouneh, A. Agarwal, and A. En-Nouaary, “A novel path protec-
tion scheme for MPLS networks using multi-path routing,” Computer
Networks, vol. 53, no. 9, pp. 1530–1545, Jun. 2009.

[2] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE Network
Magazine, vol. 13, no. 6, pp. 24–38, Dec. 1999.

[3] Y. Mao, “A feedback-based multipath approach for secure data collection
in wireless sensor networks,” Ubiquitous Computing and Communica-
tion Journal, vol. 5, no. 2, pp. 27–32, Jun. 2010.

[4] H. Alzaid, E. Foo, and J. G. Nieto, “Secure data aggregation in wireless
sensor network: a survey,” in Proceedings of the 6th Australasian
Information Security Conference (AISC’08), vol. 81, Wollongong, NSW,
Australia, Jun. 2008, pp. 93–105.

[5] M. A. Simplicio, Jr, B. T. de Oliveira, P. S. L. M. Barreto, C. B. Margi,
T. C. M. B. Carvalho, and M. Naslund, “Comparison of authenticated-
encryption schemes in wireless sensor networks,” in Proceedings of the
36th Annual IEEE Conference on Local Computer Networks, Bonn,
Germany, Oct. 2011, pp. 454–461.

[6] P. Ballarini, L. Mokdad, and Q. Monnet, “Modeling tools for detecting
DoS attacks in WSNs,” Security and Communication Networks, 2013,
not published yet.

[7] S. K. Singh, M. P. Singh, and D. K. Singh, “A survey on network
security and attack defense mechanism for wireless sensor networks,”
International Journal of Computer Trends and Technology, May 2011.

[8] E. Stavrou and A. Pitsillides, “A survey on secure multipath routing
protocols in WSNs,” Computer Networks, vol. 54, no. 13, pp. 2215–
2238, Sep. 2010.

[9] J. Ben-Othman and L. Mokdad, “Enhancing data security in ad hoc net-
works on based multipath routing,” Journal of Parallel and Distributed
Computing, vol. 70, no. 3, pp. 309–316, Mar. 2010.

[10] K. Wang, X. Zou, and Y. Sui, “A multiple secret sharing scheme based
on matrix projection,” in Proceedings of the 33rd Annual IEEE Interna-
tional Computer Software and Applications Conference (COMPSAC’09),
Seattle, WA, USA, Jul. 2009, pp. 400–405.

[11] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, Nov. 1979.


	Introduction
	Proposed solution
	Traffic classification
	Low importance traffic: SDMP method
	Middle importance traffic: Shamir's Secret Sharing Scheme
	High importance traffic: ciphering

	Comparison of the different methods
	Confidentiality
	Complexity
	Overhead
	Fault resistance

	Conclusion
	References

